Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 132(4): 811-817, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622678

RESUMO

Crassulacean acid metabolism (CAM) is a photosynthetic adaptation found in at least 38 plant families. Typically, the anatomy of CAM plants is characterized by large photosynthetic cells and a low percentage of leaf volume consisting of internal air space (% IAS). It has been suggested that reduced mesophyll conductance (gm) arising from low % IAS benefits CAM plants by preventing the movement of CO2 out of cells and ultimately minimizing leakage of CO2 from leaves into the atmosphere during day-time decarboxylation. Here, we propose that low % IAS does not provide any adaptive benefit to CAM plants, because stomatal closure during phase III of CAM will result in internal concentrations of CO2 becoming saturated, meaning low gm will not have any meaningful impact on the flux of gases within leaves. We suggest that low % IAS is more likely an indirect consequence of maximizing the cellular volume within a leaf, to provide space for the overnight storage of malic acid during the CAM cycle.


Assuntos
Dióxido de Carbono , Metabolismo Ácido das Crassuláceas , Dióxido de Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Fotossíntese , Plantas/metabolismo
2.
Ann Bot ; 132(4): 855-867, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37638861

RESUMO

Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.


Assuntos
Metabolismo Ácido das Crassuláceas , Fotossíntese , Fotossíntese/fisiologia , Taxa Respiratória , Plantas/metabolismo , Mitocôndrias/metabolismo
3.
Ann Bot ; 132(4): 801-810, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36821473

RESUMO

BACKGROUND AND AIMS: Many succulent species are characterized by the presence of Crassulacean acid metabolism (CAM) and/or elevated bulk hydraulic capacitance (CFT). Both CAM and elevated CFT substantially reduce the rate at which water moves through transpiring leaves. However, little is known about how these physiological adaptations are coordinated with leaf vascular architecture. METHODS: The genus Clusia contains species spanning the entire C3-CAM continuum, and also is known to have >5-fold interspecific variation in CFT. We used this highly diverse genus to explore how interspecific variation in leaf vein density is coordinated with CAM and CFT. KEY RESULTS: We found that constitutive CAM phenotypes were associated with lower vein length per leaf area (VLA) and vein termini density (VTD), compared to C3 or facultative CAM species. However, when vein densities were standardized by leaf thickness, this value was higher in CAM than C3 species, which is probably an adaptation to overcome apoplastic hydraulic resistance in deep chlorenchyma tissue. In contrast, CFT did not correlate with any xylem anatomical trait measured, suggesting CAM has a greater impact on leaf transpiration rates than CFT. CONCLUSIONS: Our findings strongly suggest that CAM photosynthesis is coordinated with leaf vein densities. The link between CAM and vascular anatomy will be important to consider when attempting to bioengineer CAM into C3 crops.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Fotossíntese/fisiologia , Clusia/metabolismo , Folhas de Planta/fisiologia , Água/metabolismo
4.
Ann Bot ; 132(4): 881-894, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661206

RESUMO

BACKGROUND AND AIMS: Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis characterized by a diel pattern of stomatal opening at night and closure during the day, which increases water-use efficiency. Starch degradation is a key regulator of CAM, providing phosphoenolpyruvate as a substrate in the mesophyll for nocturnal assimilation of CO2. Growing recognition of a key role for starch degradation in C3 photosynthesis guard cells for mediating daytime stomatal opening presents the possibility that starch degradation might also impact CAM by regulating the provision of energy and osmolytes to increase guard cell turgor and drive stomatal opening at night. In this study, we tested the hypothesis that the timing of diel starch turnover in CAM guard cells has been reprogrammed during evolution to enable nocturnal stomatal opening and daytime closure. METHODS: Biochemical and genetic characterization of wild-type and starch-deficient RNAi lines of Kalanchoë fedtschenkoi with reduced activity of plastidic phosphoglucomutase (PGM) constituted a preliminary approach for the understanding of starch metabolism and its implications for stomatal regulation in CAM plants. KEY RESULTS: Starch deficiency reduced nocturnal net CO2 uptake but had negligible impact on nocturnal stomatal opening. In contrast, daytime stomatal closure was reduced in magnitude and duration in the starch-deficient rPGM RNAi lines, and their stomata were unable to remain closed in response to elevated concentrations of atmospheric CO2 administered during the day. Curtailed daytime stomatal closure was linked to higher soluble sugar contents in the epidermis and mesophyll. CONCLUSIONS: Nocturnal stomatal opening is not reliant upon starch degradation, but starch biosynthesis is an important sink for carbohydrates, ensuring daytime stomatal closure in this CAM species.


Assuntos
Metabolismo Ácido das Crassuláceas , Kalanchoe , Metabolismo Ácido das Crassuláceas/genética , Kalanchoe/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Dióxido de Carbono/metabolismo , Amido/metabolismo , Fotossíntese/fisiologia
5.
Plant Cell Environ ; 46(5): 1472-1488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36624682

RESUMO

Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Clusia/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Água/metabolismo
6.
Front Plant Sci ; 13: 1043429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507451

RESUMO

Succulence is an adaptation to low water availability characterised by the presence of water-storage tissues that alleviate water stress under low water availability. The succulent syndrome has evolved convergently in over 80 plant families and is associated with anatomical, physiological and biochemical traits. Despite the alleged importance of cell wall traits in drought responses, their significance in the succulent syndrome has long been overlooked. Here, by analyzing published pressure-volume curves, we show that elastic adjustment, whereby plants change cell wall elasticity, is uniquely beneficial to succulents for avoiding turgor loss. In addition, we used comprehensive microarray polymer profiling (CoMPP) to assess the biochemical composition of cell walls in leaves. Across phylogenetically diverse species, we uncover several differences in cell wall biochemistry between succulent and non-succulent leaves, pointing to the existence of a 'succulent glycome'. We also highlight the glycomic diversity among succulent plants, with some glycomic features being restricted to certain succulent lineages. In conclusion, we suggest that cell wall biomechanics and biochemistry should be considered among the characteristic traits that make up the succulent syndrome.

7.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800849

RESUMO

It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants.


Assuntos
Adaptação Fisiológica/genética , Agave/genética , Metabolismo Ácido das Crassuláceas/genética , Nicotiana/genética , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , Agave/metabolismo , Dióxido de Carbono/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Malatos/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/biossíntese , Salinidade , Estresse Fisiológico , Nicotiana/metabolismo , Transgenes
8.
J Exp Bot ; 72(12): 4419-4434, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33754643

RESUMO

In plants with Crassulacean acid metabolism (CAM), it has been proposed that the requirement for nocturnal provision of phosphoenolpyruvate as a substrate for CO2 uptake has resulted in a re-routing of chloroplastic starch degradation from the amylolytic route to the phosphorolytic route. To test this hypothesis, we generated and characterized four independent RNAi lines of the obligate CAM species Kalanchoë fedtschenkoi with a >10-fold reduction in transcript abundance of plastidic α-glucan phosphorylase (PHS1). The rPHS1 lines showed diminished nocturnal starch degradation, reduced dark CO2 uptake, a reduction in diel water use efficiency (WUE), and an overall reduction in growth. A re-routing of starch degradation via the hydrolytic/amylolytic pathway was indicated by hyperaccumulation of maltose in all rPHS1 lines. Further examination indicated that whilst operation of the core circadian clock was not compromised, plasticity in modulating net dark CO2 uptake in response to changing photoperiods was curtailed. The data show that phosphorolytic starch degradation is critical for efficient operation of the CAM cycle and for optimizing WUE. This finding has clear relevance for ongoing efforts to engineer CAM into non-CAM species as a means of boosting crop WUE for a warmer, drier future.


Assuntos
Metabolismo Ácido das Crassuláceas , Amido , Fosforilases , Fotossíntese , Folhas de Planta/metabolismo , Amido/metabolismo , Água
9.
Funct Plant Biol ; 48(7): 703-716, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33663679

RESUMO

As future climates continue to change, precipitation deficits are expected to become more severe across tropical ecosystems. As a result, it is important that we identify plant physiological traits that act as adaptations to drought, and determine whether these traits act synergistically or independently of each other. In this study, we assessed the role of three leaf-level putative adaptations to drought: crassulacean acid metabolism (CAM), the turgor loss point (TLPΨ) and water storage hydrenchyma tissue. Using the genus Clusia as a model, we were able to explore the extent to which these leaf physiological traits co-vary, and also how they contribute to species' distributions across a precipitation gradient in Central and South America. We found that CAM is independent of the TLPΨ and hydrenchyma depth in Clusia. In addition, we provide evidence that constitutive CAM is an adaptation to year-long water deficits, whereas facultative CAM appears to be more important for surviving acute dry seasons. Finally, we find that the other leaf traits tested did not correlate with environmental precipitation, suggesting that the reduced transpirational rates associated with CAM obviate the need to adapt the TLPΨ and hydrenchyma depth in this genus.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Ecossistema , Fotossíntese , América do Sul
10.
New Phytol ; 229(6): 3116-3124, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159327

RESUMO

Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO2 is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C3 and C4 plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C3 plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO2 to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO2 via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?


Assuntos
Metabolismo Ácido das Crassuláceas , Malatos , Dióxido de Carbono , Vacúolos
11.
Plant J ; 103(2): 869-888, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314451

RESUMO

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water-use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water-limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large-scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell-enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2 , stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue-specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability.


Assuntos
Metabolismo Ácido das Crassuláceas , Kalanchoe/metabolismo , Células do Mesofilo/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Especificidade de Órgãos , Fotossíntese , Proteoma/metabolismo
13.
Gigascience ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135007

RESUMO

BACKGROUND: Crassulacean acid metabolism (CAM), a specialized mode of photosynthesis, enables plant adaptation to water-limited environments and improves photosynthetic efficiency via an inorganic carbon-concentrating mechanism. Kalanchoë fedtschenkoi is an obligate CAM model featuring a relatively small genome and easy stable transformation. However, the molecular responses to light quality and intensity in CAM plants remain understudied. RESULTS: Here we present a genome-wide expression atlas of K. fedtschenkoi plants grown under 12 h/12 h photoperiod with different light quality (blue, red, far-red, white light) and intensity (0, 150, 440, and 1,000 µmol m-2 s-1) based on RNA sequencing performed for mature leaf samples collected at dawn (2 h before the light period) and dusk (2 h before the dark period). An eFP web browser was created for easy access of the gene expression data. Based on the expression atlas, we constructed a light-responsive co-expression network to reveal the potential regulatory relationships in K. fedtschenkoi. Measurements of leaf titratable acidity, soluble sugar, and starch turnover provided metabolic indicators of the magnitude of CAM under the different light treatments and were used to provide biological context for the expression dataset. Furthermore, CAM-related subnetworks were highlighted to showcase genes relevant to CAM pathway, circadian clock, and stomatal movement. In comparison with white light, monochrome blue/red/far-red light treatments repressed the expression of several CAM-related genes at dusk, along with a major reduction in acid accumulation. Increasing light intensity from an intermediate level (440 µmol m-2 s-1) of white light to a high light treatment (1,000 µmol m-2 s-1) increased expression of several genes involved in dark CO2 fixation and malate transport at dawn, along with an increase in organic acid accumulation. CONCLUSIONS: This study provides a useful genomics resource for investigating the molecular mechanism underlying the light regulation of physiology and metabolism in CAM plants. Our results support the hypothesis that both light intensity and light quality can modulate the CAM pathway through regulation of CAM-related genes in K. fedtschenkoi.


Assuntos
Metabolismo Ácido das Crassuláceas , Regulação da Expressão Gênica de Plantas , Kalanchoe/genética , Folhas de Planta/genética , Luz Solar , Transcriptoma , Kalanchoe/metabolismo , Kalanchoe/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
BMC Genomics ; 19(1): 588, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081833

RESUMO

BACKGROUND: Crassulacean acid metabolism (CAM) enhances plant water-use efficiency through an inverse day/night pattern of stomatal closure/opening that facilitates nocturnal CO2 uptake. CAM has evolved independently in over 35 plant lineages, accounting for ~ 6% of all higher plants. Agave species are highly heat- and drought-tolerant, and have been domesticated as model CAM crops for beverage, fiber, and biofuel production in semi-arid and arid regions. However, the genomic basis of evolutionary innovation of CAM in genus Agave is largely unknown. RESULTS: Using an approach that integrated genomics, gene co-expression networks, comparative genomics and protein structure analyses, we investigated the molecular evolution of CAM as exemplified in Agave. Comparative genomics analyses among C3, C4 and CAM species revealed that core metabolic components required for CAM have ancient genomic origins traceable to non-vascular plants while regulatory proteins required for diel re-programming of metabolism have a more recent origin shared among C3, C4 and CAM species. We showed that accelerated evolution of key functional domains in proteins responsible for primary metabolism and signaling, together with a diel re-programming of the transcription of genes involved in carbon fixation, carbohydrate processing, redox homeostasis, and circadian control is required for the evolution of CAM in Agave. Furthermore, we highlighted the potential candidates contributing to the adaptation of CAM functional modules. CONCLUSIONS: This work provides evidence of adaptive evolution of CAM related pathways. We showed that the core metabolic components required for CAM are shared by non-vascular plants, but regulatory proteins involved in re-reprogramming of carbon fixation and metabolite transportation appeared more recently. We propose that the accelerated evolution of key proteins together with a diel re-programming of gene expression were required for CAM evolution from C3 ancestors in Agave.


Assuntos
Agave/genética , Carbono/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Agave/química , Agave/metabolismo , Ciclo do Carbono , Evolução Molecular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Modelos Moleculares , Fotossíntese , Filogenia , Estrutura Secundária de Proteína
16.
Plant Sci ; 274: 394-401, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080627

RESUMO

Due to public concerns about the decreasing supply of blue water and increasing heat and drought stress on plant growth caused by urbanization, increasing human population and climate change, interest in crassulacean acid metabolism (CAM), a specialized type of photosynthesis enhancing water-use efficiency (WUE) and drought tolerance, has increased markedly. Significant progress has been achieved in both basic and applied research in CAM plants since the beginning of this century. Here we provide a brief overview of the current status of CAM research, and discuss future needs and opportunities in a wide range of areas including systems biology, synthetic biology, and utilization of CAM crops for human benefit, with a focus on the following aspects: 1) application of genome-editing technology and high-throughput phenotyping to functional genomics research in model CAM species and genetic improvement of CAM crops, 2) challenges for multi-scale metabolic modeling of CAM systems, 3) opportunities and new strategies for CAM pathway engineering to enhance WUE and drought tolerance in C3 (and C4) photosynthesis crops, 4) potential of CAM species as resources for food, feed, natural products, pharmaceuticals and biofuels, and 5) development of CAM crops for ecological and aesthetic benefits.


Assuntos
Produtos Agrícolas/metabolismo , Edição de Genes , Genômica , Biologia Sintética , Biologia de Sistemas , Água/metabolismo , Biocombustíveis , Mudança Climática , Secas , Temperatura Alta , Fotossíntese
17.
Methods Ecol Evol ; 9(3): 734-743, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29938013

RESUMO

Floral nectar is a reward offered by flowering plants to visiting pollinators. Nectar chemistry is important for understanding plant nutrient allocation and plant-pollinator interactions. However, many plant species are difficult to sample as their flowers are small and produce low amounts of nectar.We compared the effects of different methods of nectar collection on the amino acid composition of flowers with low volumes of nectar. We used five methods to collect nectar from 60 (5 × 12) Calluna vulgaris flowers: microcapillary tubes, a low-volume flower rinse (the micro-rinse method, using 2 µl water), filter paper, a high-volume flower rinse (2 ml water) and a flower wash (2 ml water). We analysed the samples for free amino acids using quantitative UHPLC methods .We found that the micro-rinse method (rinsing the nectary with enough water to only cover the nectary) recovered amino acid proportions similar to raw nectar extracted using microcapillary tubes. The filter paper, 2 ml rinse and 2 ml wash methods measured significantly higher values of free amino acids and also altered the profile of amino acids. We discuss our concerns about the increased contamination risk of the filter paper and high-volume rinse and wash samples from dried nectar across the floral tissue (nectar unavailable to floral visitors), pollen, vascular fluid and cellular fluid.Our study will enable researchers to make informed decisions about nectar collection methods depending on their intended chemical analysis. These methods of sampling will enable researchers to examine a larger array of plant species' flowers to include those with low volumes of nectar.

18.
Methods Ecol Evol ; 9(2): 430-438, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576862

RESUMO

Pollen provides floral visitors with essential nutrients including proteins, lipids, vitamins and minerals. As an important nutrient resource for pollinators, including honeybees and bumblebees, pollen quality is of growing interest in assessing available nutrition to foraging bees. To date, quantifying the protein-bound amino acids in pollen has been difficult and methods rely on large amounts of pollen, typically more than 1 g. More usual is to estimate a crude protein value based on the nitrogen content of pollen, however, such methods provide no information on the distribution of essential and non-essential amino acids constituting the proteins.Here, we describe a method of microwave-assisted acid hydrolysis using low amounts of pollen that allows exploration of amino acid composition, quantified using ultra high performance liquid chromatography (UHPLC), and a back calculation to estimate the crude protein content of pollen.Reliable analysis of protein-bound and free amino acids as well as an estimation of crude protein concentration was obtained from pollen samples as low as 1 mg. Greater variation in both protein-bound and free amino acids was found in pollen sample sizes <1 mg. Due to the variability in recovery of amino acids in smaller sample sizes, we suggest a correction factor to apply to specific sample sizes of pollen in order to estimate total crude protein content.The method described in this paper will allow researchers to explore the composition of amino acids in pollen and will aid research assessing the available nutrition to pollinating animals. This method will be particularly useful in assaying the pollen of wild plants, from which it is difficult to obtain large sample weights.

19.
Nat Commun ; 8(1): 1899, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196618

RESUMO

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.


Assuntos
Ácidos/metabolismo , Evolução Molecular , Genoma de Planta , Kalanchoe/genética , Dióxido de Carbono/metabolismo , Duplicação Gênica , Kalanchoe/classificação , Kalanchoe/metabolismo , Fotossíntese , Filogenia , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Água/metabolismo
20.
J Plant Physiol ; 218: 144-154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28822907

RESUMO

Nocturnal degradation of transitory starch is a limiting factor for the optimal function of crassulacean acid metabolism and must be coordinated with phosphoenolypyruvate carboxylase (PEPC)-mediated CO2 uptake to optimise carbon gain over the diel cycle. The aim of this study was to test the hypothesis that nocturnal carboxylation is coordinated with starch degradation in CAM via a mechanism whereby the products of these pathways regulate diel transcript abundance and enzyme activities for both processes. To test this hypothesis, a starch and CAM-deficient mutant of Mesembryanthemum crystallinum was compared with wild type plants under well-watered and saline (CAM-inducing) conditions. Exposure to salinity increased the transcript abundance of genes required for nocturnal carboxylation, starch and sucrose degradation in both wild type and mutant, but the transcript abundance of several of these genes was not sustained over the dark period in the low-carbohydrate, CAM-deficient mutant. The diel pattern of transcript abundance for PEPC mirrored that of PEPC protein, as did the transcripts, protein, and activity of chloroplastic starch phosphorylase in both wild type and mutant, suggesting robust diel coordination of these metabolic processes. Activities of several amylase isoforms were low or lacking in the mutant, whilst the activity of a cytosolic isoform of starch phosphorylase was significantly elevated, indicating contrasting modes of metabolic regulation for the hydrolytic and phosphorylytic routes of starch degradation. Externally supplied sucrose resulted in an increase in nocturnal transcript abundance of genes required for nocturnal carboxylation and starch degradation. These results demonstrate that carbohydrates impact on transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in CAM.


Assuntos
Regulação da Expressão Gênica de Plantas , Mesembryanthemum/fisiologia , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , Salinidade , Amido/metabolismo , Ritmo Circadiano , Mesembryanthemum/genética , Mutação , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA